RSS
热门关键字:
当前位置 :| 主页>技术方案>

一种改进嵌入Linux实时性的新型方案

来源:linux联盟 作者:互联网 时间:2008-10-15 Tag:实时方案   点击:

对嵌入式Linux进行实时性改进是嵌入式操作系统领域的一个研究热点。本文在分析了现有嵌入式操作系统实时性不足的基础上,提出了一种新型的改进方案(将RTAI和uClinux相结合),并给出具体的工控应用实例,进一步对这种系统的功能进行有效验证。


图1 双内核实时系统嵌入式实时Linux架构


嵌 入式Linux以代码开放、价格低廉、功能强大又易于移植的特性正在被广泛应用,为嵌入式操作系统提供了一个极具吸引力的选择。但许多实际应用,譬如多媒 体通信、生产过程控制、在线事务处理等等都要求对外部事件在限定的时间内做出反应。因而嵌入式系统实时性问题越来越受到关注,对嵌入式Linux进行实时 性改进也成为嵌入式操作系统领域的一个研究热点。

本文提出了一种基于uClinux的嵌入式实时操作系统方案。将RTAI和 uClinux相结合,既满足了嵌入式应用的需求,同时又保证了系统的硬实时性。此外,还有强大的网络功能、易升级性、易移植性等优点。最后结合基于这一 操作系统开发的重大装备远程监控系统的应用案例,进一步从功能和性能上对其进行验证。

现有嵌入式操作系统应用中存在的问题

一个优秀的嵌入式操作系统是嵌入式系统成功的关键。它除了具备一般操作系统最基本的功能,如任务调度、同步机制、中断处理、文件功能等,还需要具有以下特点:

1. 更好的硬件适应性,也就是良好的移植性;

2. 占有更少的硬件资源;

3. 高可靠性;

4. 提供强大的网络功能,支持TCP/IP协议及其他协议;

5. 有些应用要求具有实时性能。

现 有的嵌入式操作系统大致可分为商用型和免费型两类:商用型操作系统由于功能稳定、可靠,有完善的技术支持和售后服务,在嵌入式市场占有一定的份额。但它同 时也存在价格昂贵、需要版权、源代码不公开等一系列问题;免费型操作系统(如Linux)源码公开,有价格方面的优势,但在严格满足嵌入式实时应用需求方 面还有欠缺。


图2 实时内核实现机理


RTAI对Linux的实时性改进

现有几种针对Linux的实时系统解决方案,实现方法主要包括两种:

1)直接修改Linux内核、增加实时性,如:Montavista;

2)在普通Linux内核之上增加实时模块、双内核结构,如:RTLinux或RTAI。

Montavista 可以满足用户的软实时要求,RTLinux或RTAI着重增强Linux的硬实时特性。软实时系统的时限是柔性灵活的,它可以容忍偶然的超时错误。失败造 成的后果并不严重,仅仅是轻微地降低了系统的吞吐量。硬实时系统有一个刚性的、不可改变的时间限制,它不允许任何超出时限的错误。超时错误会带来损害甚至 导致系统失败、或者导致系统不能实现它的预期目标。

RTAI采用双内核方法,不直接使用Linux的任何功能,而是把需要高度时间精度的 工作写成一个驱动程序的形式,然后直接用PC时序芯片所产生的中断调用这个驱动程序。RTAI与NMT RT-Linux的最大不同之处在于,它在Linux上定义了一组实时硬件抽象层(RTHAL)。RTHAL将RTAI需要在Linux中修改的部分定义 成一组程序界面,RTAI只使用这组界面和Linux沟通。这样做的好处在于,用户可以将直接修改的Linux核心程序代码减至最小,这有可能使得将 RTHAL移植到新版Linux的工作量减至最低。

但是,RTAI虽然满足了硬实时性要求,却没有被裁减为足够小且适用于嵌入式系统。

RTAI+uClinux的实时方案

uClinux 是为嵌入式应用设计的,它本身并没有更多地关注实时问题。uClinux经过小型化改造,形成了一个高度优化、代码紧凑的嵌入式Linux,并保留了 Linux大多数的优点。它专门针对无MMU的CPU,去除了普通Linux内核中的虚拟内存管理部分。更重要的是,uClinux提供了完整的 TCP/IP协议栈,并支持大量其他的网络协议,为嵌入式系统提供了强大的网络支持。

而从前面的分析可以看出,RTAI是基于普通Linux内核,相对于嵌入式应用其内核过于庞大;而uClinux本身并没有更多地关注实时问题。因此,可以将RTAI和uClinux相结合,采用双内核的设计方案,既满足了嵌入式应用的需求,又保证了系统的硬实时性。

1.硬件抽象层


图3 系统中断处理流程图


系统的实现基础是硬件抽象层,通过硬件抽象层进行硬件管理,把基本内核和实时内核结合在一起,其中一个内核的改变,不会影响另一个内核的执行。

硬 件抽象层定义了本系统同硬件之间的抽象接口,主要用来截取硬件中断,并且依据实时内核调度器的需求,重定向为基本内核任务或是实时任务。RTHAL包含一 个关键的组件:中断描述符表(IDT,Interrupt Descriptor Table),它定义了一套指针用来处理中断例程。RTHAL本身定义了一个结构,使得基本内核中断处理函数能够很容易地被实时处理函数所替代。这样,当 实时内核通过RTHAL激活后,新的IDT表为合法。在以上控制下,基本内核作为实时系统的任务提供服务。

2.双内核结构

双内核实时系统的总体结构模型如图1所示,主要包含了基本内核、实时内核、硬件抽象层、硬件部分。

其 中基本内核(uClinux)和实时内核(RTAI)分别处理非实时和实时任务的调度和执行,而实时任务和非实时任务之间信息的交换要通过管道 (FIFO)或共享内存(MBUFF)来实现。当实时任务运行时,基本内核被硬件抽象层屏蔽。即实时内核将基本内核作为优先级最低的一个任务来运行,只有 在没有实时任务运行的时候才予以调度。

3.实时内核动态加载

嵌入式实时Linux的实时内核是动态加载的。实时任务被激活前,实时内核并没有启动,基本内核通过RTHAL透明访问硬件,就像RTHAL不存在一样。当实时任务被激活时,RTHAL结构发生变化,基本内核被实时内核接管,图2表明了实时内核启动前后,系统发生的变化。

最新评论共有 0 位网友发表了评论
发表评论
评论内容:不能超过250字,需审核,请自觉遵守互联网相关政策法规。
用户名: 密码:
匿名?
注册

嵌入式linux中文站
QQ群讨论 微博订阅

微信扫一扫关注我们
随时获取最新开源资讯